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Abstract: The authors have previously proposed corrugated soft elastomeric capacitors (cSEC) to cre-
ate ultra compliant scalable strain gauges. The cSEC technology has been successfully demonstrated
in engineering and biomechanical applications for in-plane strain measurements. This study extends
work on the cSEC to evaluate its performance at measuring angular rotation when installed folded at
the junction of two plates. The objective is to characterize the sensor’s electromechanical behavior
anticipating applications to the monitoring of welded connections in steel components. To do so, an
electromechanical model that maps the cSEC signal to bending strain induced by angular rotation
is derived and adjusted using a validated finite element model. Given the difficulty in mapping
strain measurements to rotation, an algorithm termed angular rotation index (ARI) is formulated
to link measurements to angular rotation directly. Experimental work is conducted on a hollow
structural section (HSS) steel specimen equipped with cSECs subjected to compression to generate
angular rotations at the corners within the cross-section. Results confirm that the cSEC is capable of
tracking angular rotation-induced bending strain linearly, however with accuracy levels significantly
lower than found over flat configurations. Nevertheless, measurements were mapped to angular
rotations using the ARI, and it was found that the ARI mapped linearly to the angle of rotation, with
an accuracy of 0.416◦.

Keywords: flexible strain gauge; angular rotation; angular motion sensing; strain monitoring; capaci-
tor; bending strain; complex geometry; out-of-plane deformation

1. Introduction

The rapid growth of the electronics industry and advanced materials has enabled
the development of flexible electronics, empowering new measurement capabilities over
complex and highly deformable surfaces. Of interest to this paper are thin-film based flexi-
ble devices capable of mechanical strain measurement, termed flexible strain sensors [1,2].
These devices can function on different sensing principles, with mechanisms based on
capacitance [3–5], resistance [6,7], piezoelectrics/triboelectrics [8,9], and transistors [10,11],
and with example applications in the areas of biomechanical engineering [12,13], wearable
sensors [14,15], and structural health monitoring [16,17]. Flexible sensors can be fabricated
using conductive polymers [18,19] and silicone [20,21], sometimes doping the matrix with
nanoparticles [22–25], to improve on electrical properties.
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A key advantage of flexible sensors is their capability to sustain large deformations,
making them ideal candidates for applications to irregular or complex geometries. They can
advantageously be applied over corners, welds, and curved and rugged surfaces. Here, we
study the use of a flexible sensor for the monitoring of angular motion in steel components.
Other angular motion sensing technologies have been studied in the literature. This
includes a tube-based triboelectric–electromagnetic sensor that integrates magnets and a
coil with flexible foam [26], a planar microwave sensor built from a split-ring resonator and
a microstrip line [27], an ultralight, flexible, and super compressible sensor fabricated using
reduced graphene oxide-based lamellar carbon aerogels [28], graphene platelets (GnPs) and
multi-walled carbon nanotubes (MWCNTs)-based films [29], a highly stretchable sensor
fabricated by depositing carboxylic MWCNTs onto bacterial cellulose substrate [30], and a
flexible strain sensor fabricated by incorporating platinum (Pt) constituent material into
polyimide films [31].

The authors have previously proposed a soft elastomeric capacitor (SEC) that trans-
duces strain into a measurable change in capacitance. Key advantages of the SEC are its
high compliance, with a demonstrated linear strain sensing range up to 20% [32], and its
high scalability due to its low cost and ease of fabrication. The SEC is a parallel plate
capacitor constituted by layering styrene–ethylene–butylene–styrene (SEBS)-based thin-
films filled with carbon black (CB) to form the conductive plate layers, and with filled
with titania to form the dielectric layer. The technology has been applied to many struc-
tural health monitoring applications, in particular for the monitoring of fatigue cracks in
steel [33,34]. Recently, a new generation SEC, termed corrugated soft elastomeric capacitor
(cSEC), was engineered by texturing the top surface of the dielectric in order to tune the
in-plane stiffness and thus the transverse Poisson’s ratio. Laboratory investigations have
shown that adding such corrugation significantly improved the sensing performance of
the SEC [35]. In particular, tests results reported a gauge factor of 1.61, minimum strain
resolution of ± 14.1 µε, and minimum detectable fatigue crack size of 0.31 mm on compact
tension specimens [36].

In this paper, we leverage the high compliance of the cSEC to measure angular motion
in steel components by deploying the sensor in a folded configuration. While the long-term
goal is to use the sensor to detect and quantify cracks in corner welds, the objective of this
paper is to characterize the cSEC signal when used for angular motion sensing. The study
is performed on a hollow structural section (HSS) subjected to axial strain causing angular
motions at the corners of the cross-section. An electromechanical model is developed and
validated against experimental results. Then, an index termed angular rotation index (ARI)
is proposed to fuse measurements into a metric quantifying the level of angular rotation.

The rest of the paper is organized as follows. Section 2 provides the background on
cSEC technology and typical types of bending strains leveraged on thin panels. Section 3
presents the methodology, including a description of the experimental procedure, the nu-
merical model, the derivation of cSEC’s electromechanical model under bending strain,
and the proposed algorithm for quantifying angle of rotations. Section 4 presents and
discusses results, starting with the validation of the numerical model, followed by an
analysis of the signal study from the experimental investigation, and by the discussion of
results obtained from the algorithm. Section 5 concludes the paper.

2. Background

This section provides the necessary background on the cSEC technology along with
the derivation of an extended electromechanical model adapted for angular motion sensing
and discusses a four-step algorithm used in assessing and quantifying the angle of rotations.

2.1. cSEC Technology

A cSEC fabricated with a reinforced corrugation pattern is presented in Figure 1a.
Its sensing principle is based on a measurable change in capacitance provoked by strain-
induced deformations in the sensor’s geometry. The fabrication process is described in
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detail in [35]. Briefly, the dielectric of the sensor is constituted by a matrix of styrene–
ethylene–butylene–styrene (SEBS) filled with titania dioxide, and the conductive plates
by SEBS filled with carbon black. The dielectric is drop-cast in a steel mold to form the
corrugation, and the conductive layers are painted onto each side of the dried dielectric.
Two copper tapes are adhered onto the painted electrodes to create electrical connections,
and a thin layer of PELCO conductive glue (No: 16050, TED Pella, INC., USA) is applied
over the copper tapes to ameliorate the electrical contact. In what follows, an extended elec-
tromechanical model suitable for measuring bending deformations and the ARI algorithm
used to relate measurements to angular motions are presented.

Figure 1. (a) Picture of a 76 mm × 76 mm cSEC with a reinforced pattern; (b) schematic of a cSEC of thickness h and a
section of the electrode layer with electrode area l × w (black layer).

2.2. Electromechanical Model

In prior work, the cSEC was utilized to measure strain associated with in-plane
deformation in the sensor, for instance, from pure axial elongations or widening of cracks.
The electromechanical model of the sensor for in-plane deformation is derived as follows.
Assuming under a low measurement frequency (<1 kHz), the cSEC can be modeled as a
non-lossy parallel plate capacitor of initial capacitance C0

C0 = e0er
A
h

(1)

where e0 = 8.854 pF/m is the vacuum permittivity, er is the relative permittivity, h is the
thickness of the dielectric, and A is the electrode area of length l and width d, as annotated
in Figure 1b.

To derive the electromechanical model applied to angular motions, consider a small
section of a cSEC as illustrated in Figure 2a. The section is of initial length l, width w, and thick-
ness h, and the strain is assumed to be distributed uniformly along the section. An incremental
stretch along the y direction produces a longer length l′, smaller width w′, and smaller thick-
ness h′, where the prime denotes a deformed dimension. Here, the capacitance response,
∆C/C0 can be expressed as:

∆C
C0

=
C1 − C0

C0
=

e0er

(
A′
h′ −

A
h

)
e0er

A
h

=
A′h− Ah′

Ah′
(2)

where C1 is the capacitance and A′ is the deformed sensing area of the deformed section.
Substituting A = lw and A′ = l′w′ into Equation (2), one obtains:

∆C
C0

=
l′w′h− lwh′

lwh′
(3)
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Assuming small changes in geometry, differentiating Equation (1) with respect to
length l and width w yields an expression for the relative change in capacitance ∆C/C0
with the in-plane strains εx and εy, and out-of-plane strain εz:

∆C
C0

=

(
∆l
l
+

∆w
w
− ∆h

h

)
=

(
l′ − l

l
+

w− w′

w
− h− h′

h

)
= εy + εx − εz (4)

where the subscript denotes the direction of strain ε along the principal axes, as indicated
in Figure 1b. Using the expressions l′ = (1 + εx)l, w′ = (1 + εy)w, and h′ = (1 + εz)h,
Equation (3) becomes:

∆C
C0

=
(1 + εx)(1 + εy)

1 + εz
− 1 (5)

Using Hooke’s Law under plane stress assumption with ν denoting the Poisson’s ratio
of the SEBS, the stress along the z-axis can be written as:

εz = −
ν

E
(σx + σy) = −

ν

1− ν
(εx + εy) =

1
(1 + εx)(1 + εy)

− 1 (6)

substituting Equation (6) into Equation (5) gives:

∆C
C0

= (1 + εx)
2(1 + εy)

2 − 1 (7)

The use of a corrugated pattern introduces an orthotropic material behavior. Here,
the transverse Poisson’s ratio νxy of a cSEC in a free-standing configuration is taken as:

νxy = −
εy

εx
(8)

when the sensor is fully adhered onto a monitored material, the transverse Poisson’s
ratio νxy will be influenced under a composite effect, particularly, the stiffness of the
monitored material and the level of adhesion. Therefore, the transverse Poisson’s ratio
under composite effect νxy,c can be expressed as a function of weighted Poisson’s ratio and
written as:

νxy,c = −
aνxy + bνm

a + b
= −

εy,c

εx,c
(9)

where νm is the Poisson’s ratio of monitored material, 0 ≤ a ≤ 1 and 0 ≤ b ≤ 1 are weights
such that a + b = 1, and εx,c and εy,c are the in-plane strains under composite effect. For the
free-standing cSEC, a = 1 and b = 0, and for the material with high stiffness (e.g. steel or
concrete), a ≈ 1 and b ≈ 0. Substituting Equation (9) into Equation (7) yields:

∆C
C0

= (1 + εx,c)
2(1− νxy,c · εx,c)

2 − 1 (10)
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Figure 2. (a) Small cuboid unit of the mesh element; (b) deformation of an arc under compression.

Assuming that the majority of strain deformation (εx,c) in the sensor is attributed to
the rotation of the arc-length, and Equation (10) can be further refined by evolving with the
angular rotation. Figure 2b is the diagram of an arc of initial arc angle θ and chord length
d. In the experimental section, values of θ = 89.85◦ and θ = 90.05◦, and d = 10.2 mm and
d = 10.1 mm were obtained for the left and right corners, respectively. The initial arc length
L can be written:

L = θ · R = θ · d · sin(γ)
sin(θ)

= θ ·
d ·
√

1−cos(180◦−θ)
2

sin(θ)
(11)

where R is the radius of curvature and γ = (180◦ − θ)/2.
Consider two concentrated loads P acting at the free ends of the arc, and the deformed

arc central angle and radius be η and r, as illustrated in Figure 2b. Angle η can be expressed
as a function of the angular rotation α and β (also known as angle of rotation, angle of
inclination, and angle of slope) written as:

η = θ + α + β (12)

where α and β are the angle of rotations between the x and y axes and the tangent at the tip
of the deflected arcs in x and y directions, respectively. The deformed arc length L′ can be
expressed as:

L′ = η · r = (θ + α + β) · d · sin(ω)

sin(η)
= (θ + α + β) ·

d ·
√

1−cos(180◦−θ−α−β)
2

sin(θ + α + β)
(13)

with
ω =

180− η

2
=

180◦ − θ − α− β

2
(14)

It follows that εx,c in Equation (10) can be taken as bending strain εx and written as
the function of L and L′ derived in Equations (11) and (13):

εx,c = εx =
∆L
L

= (L′ − L)/L

=

(
(θ + α + β) · d·

√
1−cos(180◦−θ)

2
sin(θ+α+β)

− θ · d·
√

1−cos(180◦−θ−α−β)
2

sin(θ)

)

θ · d·
√

1−cos(180◦−θ)
2

sin(θ)

(15)
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2.3. ARI Algorithm

The angular rotation index (ARI) algorithm is developed to fuse cSEC data into a
scalar relating to the angle of rotation. The algorithm includes four consecutive steps,
illustrated in Figure 3 and discussed in what follows.

The first step consists of filtering drifts out of the measurements, a common issue
found in strain gauges used over long periods of time (Figure 3a). To do so, the change in
mean capacitance ∆Cm is computed and subtracted from each measurement segment to
align signals with the initial mean capacitance Cm. In field applications, the cSEC may be
affected by variations in temperature and humidity. These environmental effects can be
filtered out, for example, through the design of a Wheatstone bridge configuration [37].

The second step consists of extracting features (Figure 3b). These features correspond
to the peak amplitudes of capacitance (peakC

i ) and force (peakF
i ) from the ith measurement

taken in the power spectral density (PSD) as the frequency domain signal is less sensitive
to the noise content of the measurements, and used to represent the peak-to-peak (P2P)
amplitudes in the time domain. The utilization of these features is useful for filtering out
signal drifts (e.g., temperature effects) and shifts (e.g., from a loose cable).

The third step consists of fusing features into the ARI (Figure 3c). Because the load
range directly affects the P2P ∆C/C0 of the cSEC, peakC

i is normalized by taking the ratio

to the square root of the peak force
√

peakF
i to make the ARI input-independent, with the

ARI of the ith measurement segment being ARIi = peakC
i /
√

peakF
i . The square root is

taken in this equation to reduce heteroscedasticity of the residuals in linear regression and
weaken the effect of the non-linear relationship in Equation (15). Mathematically, the ARI
represents the level of the angular rotation induced by the P2P amplitude under a unit
excitation load.

The fourth step consists of correlating the ARI with the angle of rotation (Figure 3d).
This can be done by characterizing the relationship between ARI and ∆θ, therefore enabling
the identification of ∆θ online in real-time.

Figure 3. Four-step algorithm used on monitoring angle of rotation: (a) data acquisition and drift filtering; (b) feature
extraction; (c) construction of ARI; (d) rotation monitoring.

3. Methodology

This section presents the general methodology applied in this research. First, the ex-
perimental setup along with the procedure used to study the cSEC’s signals are described.
Second, the finite element model (FEM) is presented, including the geometries, material
properties, and boundary conditions. Third, the algorithm used in generating synthetic
capacitance data is discussed.

3.1. Experimental Test

The experimental study focused on characterizing the capacitance response of the
cSEC in a folded configuration using a 101.6 mm× 101.6 mm× 3.175 mm hollow structural
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section (HSS) specimen (A500 Grade C). The HSS section is used to mimic the curved
surface of an orthogonal joint in a connection. Figure 4a shows the overall experimental
setup, and Figure 4b is a close-up view of the front side of the HSS specimen. The inner
surface of the HSS specimen was sanded using 1000 grit sandpaper and cleaned with
acetone. After, as shown in Figure 4c, four cSECs were glued in folded configurations
by adhering the flat surface onto the inner surface of the curved corners using an off-
the-shelf bi-component epoxy (JB Weld) so that the sensor was in full contact with the
arc surface, which allowed the measurement of angular motion. Wires were fixed with
electrical tape to be electrically insulated. Two C 3 × 5 steel channels (Gr. A36 steel) were
placed over the top and bottom corners to affix the HSS to a closed-loop servo-hydraulic
testing machine (MTS model 312.41 with a TestStar IIm controller) equipped with model
647 HydraulicWedge Grips. Four digital angle gauges, labeled with A, B, C, and D in
Figure 4b, with a measurement resolution of 0.05◦ and a minimum reaction time of 0.1 s
were installed above and below the left and right corners to measure localized angular
rotations. The measurements from each angle gauge were assigned to be negative for
clockwise rotations and positive for counterclockwise rotations, as indicated in Figure 5d.

Figure 4. (a) Overall experimental configuration (green arrow indicates the loading direction);
(b) zoom on the front side of HSS specimen; (c) close-up view of the inner surface, right corner.

A preload of 0.05 kN was applied on the HSS specimen prior to each test to obtain
a compression–compression mode, and the specimen was subjected to a displacement-
controlled harmonic excitation at a constant frequency of 1 Hz. Ten tests were conducted,
each lasting 120 cycles, but at different displacement amplitudes: 0.5, 1, 1.5, 2, 2.5, 3, 3.5,
4, 4.5, and 5 mm. A digital camera was placed in front of the specimen to simultaneously
record the angular rotations measured by the angle gauges during testing, and the frame
rate was set as 30 fps. Load and displacement data were recorded from the MTS at
20 samples/second, and cSEC capacitance data was sampled at 80 samples/second using
an off-the-shelf data acquisition board (ACAM PCAP02).

3.2. Numerical Model

To numerically characterize the sensor’s response under angular motion-induced
bending strain, a 3D nonlinear FEM of the experimental setup was constructed in ANSYS
2020 R2 [38]. As shown in Figure 5a, the HSS specimen and the C-shape channels were
respectively assigned as ASTM A500 Grade C steel and A36 steel. The material properties
used in the FEM simulations are listed in Table 1. The cSEC was modeled as a corrugated
film with a substrate layer of 0.3 mm and corrugated height of 0.35 mm, and the SEBS
material was defined as an isotropic polymer with a Young’s Modulus of E = 0.41 MPa and
with the strain-dependent nonlinear Poisson’s ratio ν experimentally obtained in [35] using
digital image correlation (DIC) tests and plotted in Figure 5g.
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Table 1. Assigned properties for ASTM A500 Grade C and Gr. A36 steel.

Material Property A500 Grade C Gr. A36

density 7800 kg/m3 7850 kg/m3

Young’s modulus 7.72× 1010 Pa 2.02× 1011 Pa
Poisson’s ratio 0.31 0.32
bulk modulus 158 GPa 167 GPa
shear modulus 80.2 GPa 76.9 GPa

tensile yield strength 315 MPa 420 MPa
tensile ultimate strength 425 MPa 560 MPa

Figure 5. (a) Schematic of the numerical model showing the general geometry and of the HSS specimen; (b) boundary
conditions of the cSEC; (c) mesh type and mesh distribution; (d) simulated deformation and boundary conditions of the
HSS specimen; (e) normal elastic distribution of the cSEC within a folded configuration; (f) front section view of the sensor
showing the deformation under angular motion; (g) strain-dependent nonlinear transverse Poisson’s ratio of SEBS.

As illustrated in Figure 5c, the sensor and HSS specimens were meshed by using the
tetrahedrons and multizone mesh method, respectively. The mesh size was set as 0.2 mm
following the results of a convergence study, resulting in a total of 7013 mesh elements on
the sensor. Boundary conditions of the cSEC-HSS specimen are presented in Figure 5b,d.
The cSEC was modeled as fully bonded on the inner surface of the HSS specimen to simulate
a full adhesion, and the HSS specimen was constrained by a fixed support (restraining x, y,
and z translational degrees-of-freedom) at the top C-shape channel and simply supported
(restraining x and y translational degrees-of-freedom) at the bottom of the C-shape channel.
Both C-shape channels were assigned as frictional contacts at the HSS interface, and the
frictional coefficient was defined as 0.78 obtained from literature [39]. Four pairs of nodes
were set at each corner of the HSS to generate synthetic measurements of localized angular
rotations (∆θi), corresponding to the measured states from the four digital angle gauges
used in the experimental tests. A 1 Hz harmonic excitation with constant displacement
levels was applied on the base surface of the bottom C-shape channel section to simulate
the loading protocol used in the laboratory environment.

3.3. Simulation of cSEC Measurements

Figure 6a,b present the distribution of the generated mesh elements on cSEC. Equation (2)
indicates the capacitance response of the sensor can be directly obtained from the change
in its sensing area. This principle is used to generate synthetic measurements in FEM
simulations. To accomplish this, a sensor is meshed into P elements, and each element is
sub-divided into Q cuboids (Figure 6d), where each cuboid is considered small enough
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such that the strain field can be assumed as uniform within the cuboid. The relative change
in capacitance of a given cuboid (Figure 6e) is taken as:

∆Cp,q

Cp,q
0

=
(

1 + ε
p,q
x,c

)2(
1− ν

p,q
xy,c · ε

p,q
x,c

)2
− 1

=
Ap,q

Ap,q
0

(16)

where superscript p, q indicates quantities associated with the qth cuboid of the pth mesh
element. The capacitance response of the meshed region (Figure 6c) is obtained through
the summation of the capacitance of every cuboid over every mesh element:

∆C
C0

=
1

p · q
P

∑
p=1

Q

∑
q=1

∆Ap,q

Ap,q
0

=
1

p · q
P

∑
p=1

Q

∑
q=1

∆Cp,q

Cp,q
0

(17)

Figure 5e presents the normal elastic strain distribution numerically obtained from
the FEM under a 4 mm displacement. Applying Equation (16) shows that up to 93.6% of
the total elastic strain under the angular motion is distributed around the sensing area in
contact with the corner of the HSS specimen (as shown in Figure 5e). Therefore, it verified
the hypothesis in Equation (11) that the electromechanical model of the cSEC under the
angular bending deformation can be derived by accounting only for strain occurring along
the arc length of the corner.

Figure 6. Schematic drawings show: (a) meshed cSEC; (b) details of partitioned elements; (c) normal
elastic strain distributed on target element; (d) selected mesh element; (e) small cuboid unit of the
mesh element under deformation.

4. Results and Discussion

This section validates the numerical model using experimental data and analyses
experimental results demonstrating the capability of the cSEC for monitoring both the
rotation-induced bending strain and angular rotations.

4.1. Numerical Model Validation

The validation of the numerical model was conducted by comparing experimental to
numerical results using the applied compression forces and measured angle of rotation
∆θ. Figure 7a is a time series plot comparing results under a displacement of 3.0 mm maxi-
mum amplitude, and Figure 7b summarizes results under each maximum displacement
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level, with experimental results shown as the averaged maximum compression force over
120 cycles. There is a close match between experimental tests and the FEM, with a fitted
root mean square error (RMSE) and mean absolute percentage error (MAPE) of 4.03% and
5.29% in Figure 7a,b, respectively. Slight discrepancies are attributable to the sliding of the
C-shape connecting the HSS to the MTS.

Figure 7. Comparison of the compression forces obtained numerically and experimentally: (a) time series under a 3.0 mm
maximum displacement amplitude, and (b) average maximum compression force under each maximum displacement
amplitude; (c) comparison of angular rotation (∆θi) under a 3.0 mm maximum displacement amplitude; (d) absolute values
of angular rotations (∆θi) as a function of applied displacement.

Figure 7c compares results for the angle of rotation in time series under a maximum
displacement amplitude of 3.0 mm, where L and R denote the left and right angles, respec-
tively. Figure 7d plots the measured ∆θ under each maximum displacement amplitude,
with results presented for each angle gauge. It can be noticed that the angular rotations
measured by gauges B (∆θB) and D (∆θD) are consistently higher than those measured by
gauges A (∆θA) and C (∆θC), attributable to the asymmetric boundary conditions. The left
angle (∆θL) and right angle (∆θR) were calculated as the summation of the absolute value
of angles A, C, (|∆θA|+|∆θC|) and angles B, D, (|∆θB|+|∆θD|) respectively, and angle N
(∆θN) represents the results obtained from the numerical model. There is good agreement
between experimental and numerical results, with the RMSE values of 5.33% (left angle)
and 6.41% (right angle) in Figure 7c and a maximum difference of 7.29% in Figure 7d
under the displacement of 4.5 mm. Overall, results show that experimental results can be
adequately reproduced numerically.

4.2. Bending Strain Monitoring

Figure 8a is a typical time series plot of the raw data measured from the cSEC (in-
stalled at the right angle) compared against the numerical response under the maximum
displacement of 4 mm. The first 20 s were discarded to eliminate the early-stage noise
in the signal. Quantities ∆θC and ∆θD were substituted into Equation (15) as α and β to
convert the measured angular rotation ∆θR into bending strain εx,c, represented by the blue
line in Figure 8a for which a linear interpolation was used to create a smooth curve. Strain
obtained from the numerical capacitance response was also converted to bending strain
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(εx,c) and represented by a red-circle line in the Figure. There is a good fit between the
experimental and numerical capacitance responses, with an RMSE value of 4.98%, showing
that the electromechanical model can be used to estimate bending strain.

Figure 8. (a) Comparison of experimental and numerical signals for ∆C/C0 under a 4.0 mm maximum displacement;
(b) P2P ∆C/C0 amplitude as a function of displacement with the inset showing bending strain as the function of angular
rotations (∆θ); (c) linear regression of the P2P amplitudes with respect to bending strain; (d) linear regression of the PSD
amplitudes with respect to bending strain.

Figure 8b is a bar chart comparing the averaged 120 cycles peak-to-peak (P2P) rela-
tive capacitance ∆C/C0 amplitudes (P2P illustrated in Figure 8a) under each maximum
displacement, where a higher displacement correlates with a larger angular deformation
and thus larger bending strain. It was found that the magnitudes of the P2P ∆C/C0 in-
crease with increasing maximum displacement. The inset in Figure 8b shows bending
strain versus angular rotations (∆θ), where bending strains were also calculated by using
Equation (15) with reported ∆θi in Figure 7b. Figure 8c,d plot the P2P ∆C/C0 and peak
amplitudes of the PSD of capacitance (peakC

i ) as a function of bending strain, respectively.
Fitted linear regressions have R2 values of 96.1% (P2P ∆C/C0) and 94.9% (peakC

i ), and the
95% confidence interval (CI) bounds result in an accuracy of ± 656 µε (P2P) and ± 1010 µε
(PSD), respectively. This is significantly more than the levels reported in prior work on the
cSEC under 54 µε [36] for measuring bending-induced and crack-induced strain over a flat
surface. This could be explained by the change in local thickness of the cSEC, additional
strain induced in the system that is ignored by the model, and the imperfect adhesion of
the sensor during the hand-application process.

Yet, it is evident that cSEC signal can be used to quantify the angular rotation-induced
bending strain through a linear relationship. However, mapping the cSEC measurements to
rotations is more difficult, as observed through Equation (15) and the nonlinear relationship
plotted in the inset of Figure 8b. The ARI algorithm, developed for that purpose, is verified
in the upcoming subsection.

4.3. Angular Rotation Monitoring

Figure 9 plots the computed ARI as a function of angle of rotations (∆θ) for the left
and right sensors. A desired linear relationship between the ARI and ∆θ was found on
both sets of measurements (left and right sensors), which verifies that the ARI could be
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used as a metric to quantify angular rotation. The 95% CI bound in terms of ARI and
angular rotations ∆θi yields an accuracy of±0.416◦, which compares well with off-the-shelf
tiltmeters. Overall, the sensor let to large strain readings in the folded configuration with
a poor resolution, nevertheless results from the ARI showed good accuracy in terms of
degrees. Additional tests on different cross-section geometries would be required to further
study the quality of the linear regression. This is left to future work. It should also be
remarked that this work only considered rotation-induced bending strain and that the
presence of a fatigue crack, for instance, if the sensor was installed over a corner weld, may
induce additional kinetics. This is also left to future work.

Figure 9. Linear regression of ARI with respect to angular rotation ∆θi.

5. Conclusion

This paper studied the use of an ultra compliant flexible strain gauge, termed corru-
gated soft elastomeric capacitor (cSEC), to measure angular rotations. The objective was
to understand the electromechanical behavior of the sensor when installed in a folded
configuration, with applications foreseen for fatigue crack monitoring of corner welds and
other complex geometries.

Experiments were conducted using an HSS specimen to mimic the curved surface of
an orthogonal joint in a connection. Angular deformations at the corners of the HSS section
were generated by subjecting the specimen to compression force. cSEC sensors were fully
adhered onto the inner corner surface in a folded configuration. A dynamic excitation was
applied on the HSS specimen, and the cSEC capacitance response was investigated under
several different displacement amplitudes. A finite element model (FEM) was constructed
and validated by comparing experimental and numerical data. Then, the elastic strain
distributed on the sensor was numerically simulated, and the electromechanical model
was developed for rotation-induced bending strain. An algorithm, termed angular rotation
index (ARI), was proposed to map cSEC data to rotations. Experimental data were used
to evaluate cSEC performance at measuring rotation-induced strain as well as the ARI’s
promise at mapping measurements to angular rotations.

Results showed that the peak-to-peak (P2P) relative capacitance amplitude and power
spectral density (PSD) peak of the capacitance (peakC

i ) increased with the increasing
angular rotation, and those quantities linearly related with bending strain, however with
accuracy levels significantly lower than found over flat configurations. Nevertheless,
measurements were mapped to angular rotations using the ARI, and it was found that the
ARI mapped linearly to the angle of rotation, with an accuracy of 0.416◦ that compares
well with off-the-shelf tiltmeters.

Overall, results from this investigation demonstrated that the cSEC could be used as
an angular rotation sensor. Future work is to include further testing on different specimens
and the investigation of the effects of fatigue cracks when applied over a fillet weld.
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